Black hole accretion in the TDAMM Era

May 02, 2024 - 11:00 am to 12:00 pm

Campus, PAB 102/103

Erin Kara (MIT) In Person and zoom

Zoom Recording Passcode: eW@G22P7

Most of the power from an Active Galactic Nucleus is released close to the black hole, and thus studying accretion at event horizon scales—at the intersection of inflow and outflow—is essential for understanding how much matter accretes and grows the black hole vs. how much matter is ejected, thus effecting the black hole’s large-scale environments. In the past decade, we have had a breakthrough in how we probe the inner accretion flow, through the discovery of X-ray Reverberation Mapping, where X-rays produced close to the black hole reverberate off inflowing gas. By measuring reverberation time delays, we can quantify the effects of strongly curved space time and measure black hole spin, which is key for understanding how efficiently energy can be tapped from the accretion process. In this talk, I will give an overview of this field, and will show how extending these spectral-timing techniques to extreme, transient (and possibly multi-messenger) accretion events like Tidal Disruption Events and Quasi Periodic Eruptions can help us understand the growth and impact of black holes in galactic centers.