Why does deep and cheap learning work so well?

Jul 31, 2020 - 3:00 pm to 4:00 pm
Ethan Nadler (KIPAC) via zoom

Join us this Friday, July 31st at 3pm exclusively on zoom for the next meeting of the Stats and ML Journal Club. This week, Ethan Nadler will lead a discussion on why cheap and deep learning works so well. See you then!

Title: Why does deep and cheap learning work so well?
Abstract: We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through "cheap learning" with exponentially fewer parameters than generic ones. We explore how properties frequently encountered in physics such as symmetry, locality, compositionality, and polynomial log-probability translate into exceptionally simple neural networks. We further argue that when the statistical process generating the data is of a certain hierarchical form prevalent in physics and machine-learning, a deep neural network can be more efficient than a shallow one. We formalize these claims using information theory and discuss the relation to the renormalization group. We prove various "no-flattening theorems" showing when efficient linear deep networks cannot be accurately approximated by shallow ones without efficiency loss, for example, we show that n variables cannot be multiplied using fewer than 2^n neurons in a single hidden layer.