Research Highlights

Nov 15, 2019 | ICYMI: Stanford developing a radio that searches for dark matter

A team of Stanford University researchers are on a mission to identify dark matter once and for all. But first, they’ll need to build the world’s most sensitive radio.

May 30, 2019 | Where are they now? Kate Follette

In the occasional series, "Where are they now?" we check in with KIPAC alumni: where they are now, how they've fared since their days exploring particle astrophysics and cosmology at the Institute, and how their KIPAC experiences have shaped their journeys. Next up is Kate Follette, an alum of Professor Bruce Macintosh's exoplanet group, where she searched for young exoplanets and protoplanetary disks (aka planet nurseries), in large part using data from the Gemini Planetary Imager (GPI). She's now an assistant professor of astronomy at Amherst College in Amherst, Massachusetts, where she teaches astronomy. She also teaches about those exoplanets she's still searching for.

Apr 14, 2019 | Extreme energy bullets from mini-black hole jets

A microquasar is an active collapsed star, such as a small black hole or a neutron star, which is accreting the material of a more normal companion star. It has jets or particles that shoot out along its poles and an accretion disk of hot material circling it, and is essentially a smaller cousin of Nature’s most violent objects, active galactic nuclei (AGN).

Mar 14, 2019 | Determining the Hubble-Lemaitre parameter with the Simons Observatory

The model that currently best describes evolution and structure of the Universe (referred to as Lambda-CDM or LCDM) is consistently in agreement qualitatively and quantitatively with virtually all observations we make. And with the enormous increase in the amount of data coming from different cosmic probes (for example, Type Ia supernovae, galaxy surveys, gravitational lensing, the cosmic microwave background [CMB], etc.), our ability to extensively cross-check results and improve our theoretical understanding is only growing. But LCDM isn’t perfect, and when multiple independent measurements of the same parameter are involved, there arises the distinct possibility of finding results that are in tension with each other—the measurements don’t match up, even when error bars are taken into account.

Feb 12, 2019 | How small-scale cosmology simulations predict observations from large galaxy surveys

Since 1998, analyses of supernovae data have shown that our Universe has been undergoing accelerated expansion in the latter part of its life. Because ordinary matter can only provide an attractive force, there must be something else providing the repulsive force to accelerate the Universe's expansion. We call the unknown driver of  this expansion dark energy—and the question of its origin is a core issue in cosmology and fundamental physics today.

Jan 30, 2019 | Where do the highest-energy cosmic rays come from?

A century after the discovery of cosmic rays, delving into their mysteries remains a primary focus of high-energy astrophysics. Cosmic rays consist of energetic particles propagating through interstellar and even intergalactic space, and are characterized by an energy spectrum extending over at least eleven orders of magnitude, from ~1 GeV (giga-electronvolt, a commonly used unit of energy in astrophysics) to extreme energies of about 1011 GeV (for comparison, the mass of a proton when converted to an equivalent energy via E=mc2 is just under 1 GeV—so those highest-energy cosmic rays have about the energy of a fastball packed sometimes into one elementary particle!).

Dec 10, 2018 | The splashback radius— understanding the boundaries of dark matter halos

Halos are the result of a long sequence of cosmic structure formation. We think it happened like this: The early Universe, after a very short period of rapid expansion called inflation, settled into its current phase of more leisurely general cosmic expansion (or “Hubble flow,” as cosmologists often call it). At the end of inflation, while the density of dark matter—on average—had been smoothed out to become very homogenous on large scales, small quantum perturbations were amplified to more significant density fluctuations—places where there was a tiny bit more, or less, matter. The knots of slightly higher density served as wells of gravitational potential and began to grow further with time by attracting ever more matter through gravity.

Aug 3, 2018 | Pulling double duty: How exoplanet hunting satellites can study supermassive black holes

In the centers of most galaxies lurk gigantic black holes, millions to billions of times the mass of the sun. Most of them are just minding their own business, but in about 10% of cases they are actively consuming matter and transforming much of it into vast amounts of energy. We call these gluttons “quasars”—supermassive black holes surrounded by bright, hot disks of gas called accretion disks. Although quasars are among the most luminous objects in the Universe, we still do not understand the detailed physics of how this matter behaves. This is now changing thanks to new insights and advances from an unexpected source: the highly sensitive timing satellites used to search for planets around other stars by continuously monitoring their brightness over time, to search for periodic dips caused by transiting planets.

Jul 27, 2018 | Where are they now? Simona Murgia

In the occasional series, "Where are they now?" we check in with KIPAC alumni: where they are now, how they've fared since their days exploring particle astrophysics and cosmology at the Institute, and how their KIPAC experiences have shaped their journeys. Next up is Simona Murgia, who is now an associate professor of physics and astronomy at UC Irvine. Murgia is another particle physicist-turned astrophysicist who started her post-PhD career at MINOS (Main Injector Neutrino Oscillation Search) watching neutrinos change flavor, then migrated to KIPAC in 2007 to look for dark matter using Fermi Gamma-ray Space Telescope data. Follow along as Murgia talks about transitioning from postdoc to professor, looking for dark matter in some pretty tough places, and outrunning the wasps at the old SLAC cafeteria.

Jul 12, 2018 | Astro and Ale: Astronomy on Tap

Astronomy is often called the “gateway science” because of its abundance of beautiful pictures and suitability for Discovery Channel specials. Astronomers, therefore, have an especially heavy burden among scientists to advocate for the science behind the special effects. However, astronomy and astrophysics can seem terribly complex; how do we get people to come out and learn about space in a substantive way? Well, if you’re with Astronomy on Tap, it involves going to the bar a little more often.

Jun 18, 2018 | KIPAC (and friends) react: The Fermi Gamma-ray Space Telescope at 10

On June 11, 2008, the Gamma-ray Large Area Space Telescope (GLAST) lifted off aboard the last Delta II Heavy Launch Vehicle from Cape Canaveral, FL and reached low-Earth orbit shortly thereafter. In the 10 years and one name change since that that day, what is now the Fermi Gamma-ray Space Telescope has found hundreds of pulsars, watched gamma ray flashes in terrestrial lightning, studied our own sun as a gamma-ray source, helped identify giant bubbles billowing out from the core of the Milky Way, and discovered that the neutron star at the heart of the Crab Nebula isn’t as calm as scientists used to think. To name just a few. The discoveries haven’t stopped, either—August 17, 2017, nine years to the month after the start of science operations, Fermi saw the gamma-ray flash of two neutron stars colliding, 1.7 seconds after the gravitational waves generated by this event rolled through (LIGO). Along with discoveries, Fermi is making memories—some scientific, and some of a more personal nature. KIPAC members and some of their Fermi collaborators have had a big part in both, and came together to share memories about a decade (and more) of Fermi.

Jun 6, 2018 | From the tiny to the astronomical: Massive neutrinos and cosmology

While neutrinos were hypothesized by Wolfgang Pauli back in 1930, they remain among the most mysterious particles within the Standard Model of particle physics. We now know that there are three types of neutrinos, and neutrino oscillation experiments have shown that there are at least two types which have mass. Current experiments have not yet been able to nail down the precise masses of the three neutrinos, but have placed upper bounds on sum of their masses. These upper bounds tell us that neutrinos have to be the lightest of all Standard Model particles, more than six orders of magnitude lighter than the electron!